Contaminantes secundarios

Contaminación fotoquímica

smog sobre Beigin, China

La contaminación fotoquímica se produce como consecuencia de la aparición en la atmósfera de oxidantes, originados al reaccionar entre sí los óxidos de nitrógeno, los hidrocarburos y el oxígeno en presencia de la radiación ultravioleta de los rayos del sol. La formación de los oxidantes se ve favorecida en situaciones estacionarias de altas presiones (anticiclones) asociados a una fuerte insolación y vientos débiles que dificultan la dispersión de los contaminantes primarios.

El mecanismo de formación de los oxidantes fotoquímicos es complejo, realizándose por etapas a través de una serie de reacciones químicas. El proceso completo puede ser simplificado en las tres etapas siguientes:

  • Formación de oxidantes a través del ciclo fotolítico del NO2

NO2 + Radiación ultravioleta —>NO + O
O + O2 –> O3
O3 + NO –> NO2 + O2

  • Formación de radicales libres activos. La presencia en el aire de hidrocarburos hace que el ciclo fotolítico se desequilibre al reaccionar éstos con el oxígeno atómico y el ozono generado, produciendo radicales libres muy reactivos.

O3 + 3HC –> 3HCO

  • Formación de productos finales. Los radicales libres formados reaccionan con otros radicales, con los contaminantes primarios y con los constituyentes normales del aire, dando lugar a los contaminantes fotoquímicos según las reacciones:

HC3 + HC –> Aldehídos, ketonas, etc.
HCO2 + NO2 –> Nitratos de peroxiacilo (PAN)

smog

La mezcla resultante de todas estas sustancias da lugar a la denominada contaminación fotoquímica o «smog fotoquímico», tipo Los Angeles, como normalmente se le conoce, debido a que fue en esta ciudad californiana donde se observó por primera vez. Este tipo de contaminación se presenta cada vez con más frecuencia en las grandes ciudades de los países industrializados, siendo muy interesante el estudio de la variación durante el día de la concentración de los contaminantes que intervienen en el mecanismo de formación de los oxidantes fotoquímicos.

En las primeras horas de la mañana se produce una intensa emisión de hidrocarburos (HC) y óxido nítrico (NO) al comenzar la actividad humana en las grandes ciudades (encendido de las calefacciones y tráfico intenso). El óxido nítrico (NO) se oxida a óxido nitroso (NO2) aumentando la concentración de este último en la atmósfera. Las concentraciones superiores de NO2 unido a que la radiación solar se va haciendo más intensa, ponen en marcha el ciclo fotolítico del NO2, generando oxígeno atómico que al transformarse en ozono conduce a un aumento de la concentración de este elemento y de radicales libres de hidrocarburos. Estos, al combinarse con cantidades apreciables de NO, producen una disminución de este compuesto en la atmósfera. Este descenso en la concentración de NO impide que se complete el ciclo fotolítico aumentando rápidamente la concentración de ozono (O3).

A medida que avanza la mañana la radiación solar favorece la formación de oxidantes fotoquímicos, aumentando su concentración en la atmósfera. Cuando disminuyen las concentraciones de los precursores (NOx y HC) en la atmósfera, cesa la formación de oxidantes y sus concentracciones disminuyen al avanzar el día. De aquí que la contaminación fotoquímica se manifieste principalmente por la mañana en las ciudades


Acidificación del medio ambiental (lluvias ácidas)

Entendemos por acidificación del medio ambiente la pérdida de la capacidad neutralizante del suelo y del agua, como consecuencia del retorno a la superficie de la tierra en forma de ácidos de los óxidos de azufre y nitrógeno descargados a la atmósfera.

La acidificación es un ejemplo claro de las interrelaciones entre los distintos factores ambientales, atmósfera, suelo, agua y organismos vivos. Así la contaminación atmosférica producida por los SOx y NOx afecta directa o indirectamente al agua, al suelo y a los ecosistemas.

La amplitud e importancia de la acidificación del medio es debida, principalmente, a las grandes cantidades de óxidos de azufre y de nitrógeno lanzados a la atmósfera, siendo de destacar que del total de las emisiones de SO2 en el globo terrestre, aproximadamente la mitad son emitidas por las actividades humanas (antropogénicas) y que la mayor parte de éstas se producen en las regiones industrializadas del Hemisferio Norte que ocupan menos del 5% de la superficie terrestre.

El proceso de acidificación se origina de la siguiente forma:

  • El azufre se encuentra en un principio en estado elemental, fijado en los combustibles fósiles.
  • El nitrógeno en forma elemental se encuentra en el aire y también en los combustibles.
  • Durante el proceso de la combustión de los combustibles fósiles se liberan el azufre y el nitrógeno, emitiéndose, en su mayor parte por las chimeneas, a la atmósfera como dióxido de azufre (SO2) y óxidos de nitrógeno (NOx), respectivamente.
  • Los óxidos de azufre y nitrógeno sufren una serie de fenómenos tales como transporte a gran distancia, reacciones químicas, precipitación y deposición. Con el tiempo estos óxidos y los distintos compuestos a que dan lugar retornan a la superficie de la tierra donde son absorbidos por los suelos, el agua o la vegetación.

El proceso de retorno a la tierra puede realizarse de dos maneras:

  1. Deposición seca. Una fracción de los óxidos vertidos a la atmósfera retornan a la superficie de la tierra en forma gaseosa o de aerosoles. Esto puede ocurrir cerca de las fuentes de emisión de los contaminantes o a distancia de hasta algunos cientos de kilómetros de la misma, en función de las condiciones de dispersión. No obstante, la deposición en seco es predominante en zonas próximas al foco emisor.
  2. Deposición húmeda. La mayor parte de los SO2 y NOx que permanecen en el aire sufren un proceso de oxidación que da lugar a la formación de ácido sulfúrico (SO4H2) y ácido nítrico (NO3H). Estos ácidos se disuelven en las gotas de agua que forman las nubes y en las gotas de lluvia, retornando al suelo con las precipitaciones. Una parte de estos ácidos queda neutralizada por sustancias presentes en el aire tales como el amoníaco, formando iones de amonio (NH4).

Los ácidos disueltos consisten en iones de sulfato, iones nitrato e iones de hidrógeno. Todos estos iones están presentes en las gotas de lluvia, lo que da lugar a la acidificación de la misma.


Rotura de la capa de ozono

Uno de los grandes problemas causados por las reacciones que tienen lugar entre los contaminantes de la atmósfera es el de la disminución de la capa de ozono de la estratosfera como consecuencia de la descarga de determinadas sustancias a la atmósfera.

El ozono contenido en la estratosfera se puede descomponer a través de una serie de reacciones cíclicas en las que intervienen radicales que contienen hidrógeno y nitrógeno. El ozono se puede descomponer también por absorción de radiación ultravioleta, produciendo oxígeno atómico y molecular.

Como consecuencia de estas reacciones de producción y destrucción se forma una capa de ozono cuyo espesor varía cíclicamente, tanto diaria como estacionalmente. Se han detectado como potencialmente peligrosas para la capa de ozono, tres tipos de actividades humanas:

  • Generación de gran cantidad de óxidos de nitrógeno emitidos por los aviones supersónicos como el Concorde y los cohetes espaciales.
  • Producción de óxidos nitrosos como resultado de la acción desnitrificadora de las bacterias en el suelo. Los óxidos nitrosos son productos relativamente estables que pueden persistir en la troposfera, llegando a alcanzar la estratosfera donde se pueden descomponer en óxido nítrico que es activo en la destrucción del ozono. Esta es probablemente la principal fuente del óxido de nitrógeno presente en la estratosfera y el principal agente de destrucción del ozono en el ciclo natural.
  • Finalmente, los átomos libres de cloro pueden producir la destrucción del ozono a través de una serie de reacciones. La presencia de estos átomos de cloro en la estratosfera se debe a las reacciones que sufren los clorofluorcarbonos cuando se dispersan en la atmósfera. En las últimas décadas dos de estos productos, el CF2Cl2 y el CFCl3 se han utilizado con gran profusión como refrigerantes en la industria y especialmente como propelentes de las aspersiones (“spray”), debido a su alta estabilidad química, baja toxicidad y no ser inflamables. Su estabilidad química es la que permite la migración de estos productos hasta la estratosfera, en la que se descomponen como consecuencia de la radiación ultravioleta produciendo átomos de cloro.

Regresar a los tópicos de Contaminación Atmosférica

Regresar al índice de temas de Recursos Naturales